

CANPORT

PC to Controller Area Network Adapter

Application Documentation

Version 2.0

9/15/97

�

Table Of Contents

� TOC \o "1-3" �Introduction	� GOTOBUTTON _Toc401375056 � PAGEREF _Toc401375056 �3��

Typical Applications	� GOTOBUTTON _Toc401375057 � PAGEREF _Toc401375057 �3��

Design Intentions	� GOTOBUTTON _Toc401375058 � PAGEREF _Toc401375058 �3��

CANPORT Overview	� GOTOBUTTON _Toc401375059 � PAGEREF _Toc401375059 �3��

Hardware Overview	� GOTOBUTTON _Toc401375060 � PAGEREF _Toc401375060 �3��

Software Overview	� GOTOBUTTON _Toc401375061 � PAGEREF _Toc401375061 �4��

Installation	� GOTOBUTTON _Toc401375062 � PAGEREF _Toc401375062 �4��

Software	� GOTOBUTTON _Toc401375063 � PAGEREF _Toc401375063 �4��

CANPORT Library Functions	� GOTOBUTTON _Toc401375064 � PAGEREF _Toc401375064 �5��

List of Functions	� GOTOBUTTON _Toc401375065 � PAGEREF _Toc401375065 �5��

Function: qcSetPortAddress	� GOTOBUTTON _Toc401375066 � PAGEREF _Toc401375066 �5��

Function: qcReset	� GOTOBUTTON _Toc401375067 � PAGEREF _Toc401375067 �6��

Function: qcReadRegister	� GOTOBUTTON _Toc401375068 � PAGEREF _Toc401375068 �6��

Function: qcWriteRegister	� GOTOBUTTON _Toc401375069 � PAGEREF _Toc401375069 �6��

Function: qcSearchPort	� GOTOBUTTON _Toc401375070 � PAGEREF _Toc401375070 �7��

Function: qcInitializeBaud	� GOTOBUTTON _Toc401375071 � PAGEREF _Toc401375071 �7��

Function: qcSetAcceptance	� GOTOBUTTON _Toc401375072 � PAGEREF _Toc401375072 �8��

Function: qcSetupMessage	� GOTOBUTTON _Toc401375073 � PAGEREF _Toc401375073 �8��

Function: qcCheckMessage	� GOTOBUTTON _Toc401375074 � PAGEREF _Toc401375074 �9��

Function: qcReadMessage	� GOTOBUTTON _Toc401375075 � PAGEREF _Toc401375075 �9��

Function: qcResetMessage	� GOTOBUTTON _Toc401375076 � PAGEREF _Toc401375076 �9��

Function: qcSendMessage	� GOTOBUTTON _Toc401375077 � PAGEREF _Toc401375077 �10��

Function: qcOnline	� GOTOBUTTON _Toc401375078 � PAGEREF _Toc401375078 �10��

Function: qcOffline	� GOTOBUTTON _Toc401375079 � PAGEREF _Toc401375079 �10��

Function: qcWriteMessageData	� GOTOBUTTON _Toc401375080 � PAGEREF _Toc401375080 �10��

Function: qcReadMessageData	� GOTOBUTTON _Toc401375081 � PAGEREF _Toc401375081 �11��

Function: qcDataReceivedLen	� GOTOBUTTON _Toc401375082 � PAGEREF _Toc401375082 �11��

CANPORT Sample Visual Basic Program	� GOTOBUTTON _Toc401375083 � PAGEREF _Toc401375083 �12��

CANPORT Delphi Application	� GOTOBUTTON _Toc401375084 � PAGEREF _Toc401375084 �12��

Excel CANPORT Application	� GOTOBUTTON _Toc401375085 � PAGEREF _Toc401375085 �12��

Macros	� GOTOBUTTON _Toc401375086 � PAGEREF _Toc401375086 �13��

Setup CANPORT	� GOTOBUTTON _Toc401375087 � PAGEREF _Toc401375087 �13��

Messages	� GOTOBUTTON _Toc401375088 � PAGEREF _Toc401375088 �13��

Registers	� GOTOBUTTON _Toc401375089 � PAGEREF _Toc401375089 �13��

DOS	� GOTOBUTTON _Toc401375090 � PAGEREF _Toc401375090 �13��

Libraries	� GOTOBUTTON _Toc401375091 � PAGEREF _Toc401375091 �13��

Test Application	� GOTOBUTTON _Toc401375092 � PAGEREF _Toc401375092 �13��

��

Introduction

The CANPORT from Embedded Micro Software is a very economical way to connect a Personal Computer (PC) to a Controller Area Network (CAN). The CANPORT is designed to be easy to use and easy to design applications to interface to a CAN network. The CANPORT connects to the parallel printer port of the PC.

Typical Applications

Send and receive CAN messages

Develop powerful CAN applications using PC software

Compact design is ideal for portable applications

Simulate network traffic to test module applications

Design Intentions

The CANPORT is intended to be a low-cost alternative to the PCMCIA, PC Bus Cards, and serial interface cards used to connect a PC to the CAN network. In order to keep the cost low while maintaining a high degree of functionality, the CANPORT relies on the powerful software available for the PC.

The software included is general in nature and is intended to aid in getting your application up and running quickly.

CANPORT Overview

The following block diagram shows the hardware and software model.

� EMBED Word.Picture.6 ���

Hardware Overview

The CANPORT uses an Intel 82527 CAN controller to connect to the network. The 82527 provides;

Support for CAN Specification 2.0

Standard 11 bit message identifier data and remote frames

Extended 29 bit message identifier data and remote frames

Global Identifier Masks (Acceptance filters)

14 Message Objects for transmit or receive

1 Receive Message Object with programmable mask

Programmable Bit Rate

The physical layer is a Phillips 82C250.

Software Overview

Low-level control of the CANPORT is provided by either using the CANPORT.DLL dynamic link library for Windows 95 or linking your DOS application to one of the libraries. The CANPORT.DLL or CANDOSx.LIB are used to control the interface through the parallel port to the 82527. Functions to initialize the CANPORT, initialize the network, send and receive messages are provided. The user’s application interfaces the CAN network using the CANPORT.DLL.

Installation

The CANPORT interfaces to the parallel printer port of the PC. It is designed to work with both the standard uni-directional and newer bi-directional printer ports.

The following external connections are required;

Connect the CAN network to CAN+ and CAN- on the green terminal block.

Connect a DC voltage (6 to 24 volts) to V+ and GND on the green terminal block.

Verify polarity is correct (CANPORT is protected for reverse polarity and overvoltage).

Connect the CANPORT to the printer port on the PC.

Turn on power.

Test the installation by running the TEST.EXE program in a DOS window. The printer ports are searched and the connection verified.

If CANPORT is not found, verify all connections. Also, use the debug command explained under qcSetPortAddress to identify the parallel port address.

� EMBED Word.Picture.6 ���

Software

The following software is included with the CANPORT;

Windows 95 Dynamic Link Library (DLL)

Sample source code using Visual Basic 5.0

Sample source code using Borland Delphi 3.0

Sample Application using Excel

DOS Libraries

Sample DOS Application

Software updates are provided free of charge from our web site at www.emicros.com. Send your email address to us at info@emicros.com and we will advise you when updates are available. We also encourage you to send us suggestions for enhancements at the same address.

Directory of Files

A:\CANPORT\CANPORT.DLL		Copy this file to \windows\system

A:\CANPORT\EXCEL\CANPORT.XLS	Excel application

A:\CANPORT\CANVB5			Visual Basic 5.0 sample application directory

A:\CANPORT\CANDEL			Borland Delphi 3.0 sample application directory

A:\CANPORT\CANDOS			DOS Libraries and sample application

CANPORT Library Functions

The CANPORT dynamic link library (DLL) is called CANPORT.dll and is included on the installation disk. Install this file in the \windows\system directory. The following functions (or procedures) are used to access the CANPORT board, configure the network, send messages, and monitor messages. Each are explained in detail in the following sections.

List of Functions

qcSetPortAddress		Sets the parallel port base address

qcReset			Resets the CANPORT board

qcReadRegister		Read one register on the 82527

qcWriteRegister		Write one register on the 82527

qcSearchPort		Search parallel port address for CANPORT board

qcInitializeBaud		Initialize the network baud rate

qcSetAcceptance		Sets the message acceptance filters

qcSetupMessage		Configures message objects

qcCheckMessage		Returns the status of a message

qcReadMessage		Read the message object data bytes

qcResetMessage		Reset the receive message flag

qcSendMessage		Sends a message

qcOnline			Enables CANPORT to send and receive messages

qcOffline			Removes CANPORT from sending and receiving messages

qcWriteMessageData	Writes one byte to the message object

qcReadMessageData	Reads one byte of a message object

qcDataReceivedLen		Reads the number of bytes received

Function:	qcSetPortAddress

The base address of the printer port connected to the CANPORT must be established. The qcSetPortAddress function sets the base address of the parallel port. Use this function when the printer port address is known or if the function qcSearchPort returns an error.

Calling Conventions

C		unsigned int qcSetPortAddress(unsigned int port)

Pascal		function qcSetPortAddress(port: Integer): integer; stdcall;

Function Return Codes:		qcSetPortAddress = 0	Initialization complete

Example:

	qcSetPortAddress(0x378);

Common printer port assignments are 0x0378, 0x03bc, and 0x0278. To identify the printer port assignments for a particular machine, use the DOS debug program to display memory locations 0040:0008. For example:

	C:\> debug

	-d 0040:0008 L8

	0040:0008	78 03 78 02 00 00 00 00

In this example LPT1 is at 0x0378 and LPT2 is at 0x0278 and LPT3 and LPT4 are not assigned.

�

Function:	qcReset

The qcReset function resets the Intel 82527.

Calling Conventions

C		unsigned int qcReset(void)

Pascal		function qcReset: integer; stdcall;

Function Return Codes:		qcReset = 0	Initialization complete

				qcReset = -1	Port address not initialized

Example:

	if(qcReset() == -1)

		printf(“Port address not initialized. \n”)

	else

		printf(“CANPORT reset complete. \n”)

Function:	qcReadRegister

The qcReadRegister function reads any one of the 82527 registers.

Calling Conventions

C		unsigned int qcReadRegister(unsigned char reg)

Pascal		function qcReadRegister(reg: Byte): integer; stdcall;

Function Return Codes:		qcReadRegister = x	Valid register value range 0 to 0xfe

				qcReadRegister = -1	Port address not initialized

NOTE: Register 0xFF is the serial reset address and should not be accessed.

Example:

void ReadRegisters()

{

	int x,y;

	for(x=0; x<0xfe; x++)

	{

		y = qcReadRegister(x);

		if(y < 0)

		{

			printf(“Error in qcReadRegister()\n”);

			break;

		}

		else

	printf(“Reading Register %d %d\n”, x, y);

	}

}

Function:	qcWriteRegister

The qcWriteRegister function writes any one of the 82527 registers.

Calling Conventions

C		unsigned int qcWriteRegister(unsigned char reg, unsigned char dta)

Pascal		function qcWriteRegister(reg: Byte; dta: Byte): integer; stdcall;

Function Return Codes:		qcWriteRegister = 0	Write successful

				qcWriteRegister = -1	Port address not initialized

NOTE: Register 0xFF is the serial reset address and should not be accessed.

Example:	printf(“%d\n”, qcWriteRegister(0x17, 0x05));	// write data byte

Function:	qcSearchPort

The qcSearchPort function searches the typical parallel port addresses for the CANPORT board. Search order is 0x378, 0x3bc, the 0x278. If this function cannot find the CANPORT then refer to the qcSetPortAddress section for details on establishing printer port address.

Calling Conventions

C		unsigned int qcSearchPort(void)

Pascal		function qcSearchPort: integer; stdcall;

Function Return Codes:		qcSearchPort = 0x378

qcSearchPort = 0x3BC

qcSearchPort = 0x278

qcSearchPort = -1		Not found

Example:

	x = qcSearchPort();

	if(x == -1)

printf(“CANPORT not found!\n”);

	else

		printf(“CANPORT connected to address %x\n”, x);

Function:	qcInitializeBaud

The qcInitializeBaud function initializes the baud rate.

Calling Conventions

C	unsigned int qcInitializeBaud(unsigned int BaudRatePrescaler,

unsigned int TimeSegment1,

unsigned int TimeSegment2,

unsigned int SynchronizationJumpWidth,

unsigned int SamplingMode)

Pascal	function qcInitializeBaud(BaudRatePrescaler: integer,

TimeSegment1: integer,

TimeSegment2: integer,

SynchronizationJumpWidth: integer,

SamplingMode: integer): integer; stdcall;

BaudRatePrescaler		Valid range from 0 to 63

TimeSegment1		Valid range 2 to 15

TimeSegment2		Valid range 1 to 7

SynchronizationJumpWidth	Valid range 0 to 3

SamplingMode		0 = 1 sample, 1=3 samples

Function Return Codes:	-1 = Port not initialized

-4 = Invalid BaudRatePrescaler

			-5 = Invalid TimeSegment1

			-6 = Invalid TimeSegment2

			-7 = Invalid SynchronizationJumpWidth

			-8 = Invalid SamplingMode

Baud Rate = 8000000 / (2 * (BaudRatePrescaler + 1) * (3 + TimeSegment1 + TimeSegment2))

Refer to the 82527 Data Sheet for Baud Rate Settings.

Function:	qcSetAcceptance

The qcSetAcceptance function initializes the standard and extended acceptance filters.

Calling Conventions

C		unsigned int qcSetAcceptance(unsigned int stdGlobalMask,

 long extGlobalMask)

Pascal		function qcSetAcceptance(stdGlobalMaskBaudRatePrescaler: integer,

 extGlobalMask: longint): integer; stdcall;

Function Return Codes:		qcSetAcceptance = 0	Successful

				qcSetAcceptance = -1	Port address not initialized

				qcSetAcceptance = -12	Invalid standard mask (> 0x7FF)

				qcSetAcceptance = -13	Invalid extended mask (> 0x1FFFFFFF)

stdGlobalMask	Valid range from 0 to 0x7FF, used for message objects with 11 bit identifiers

extGlobalMask	Valid range from 0 to 0x1FFFFFFF, used for message objects with 29 bit identifiers

The mask registers allow message identifiers to be masked. A ‘0’ in a bit position is considered a don’t care and will allow an incoming message identifier with a ‘0’ or ‘1’ in the corresponding bit position to be accepted. A ‘1’ in a bit position only allows a ‘1’ in the incoming message identifier bit position. This allows a range of message identifiers to be received.

For example, if the stdGlobalMask is set to = 0x7FC and the message object #1 has an identifier set to 0x100, then message object #1 will receive incoming messages with identifiers 0x100, 0x101, 0x102, and 0x103.

Function:	qcSetupMessage

The qcSetupMessage configures a message object.

Calling Conventions

C	unsigned int qcSetupMessage(unsigned char MessageNo,

					unsigned char Direction,

long ID,

unsigned int Idtype,

 				unsigned char MessageLen)

Pascal		function qcSetupMessage(MessageNo: Byte;

					Direction: Byte;

 				ID: longint;

 				IDtype: integer;

 				MessageLen: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission or reception.

Direction:	1 = Transmit, 0 = Receive

ID:		Message identifier, standard identifier uses lowest 11 bits, extended uses lowest 29 bits.

IDtype:		0=Standard identifier(11 bit id’s), 1=Extended identifier (29 bit id’s)

MessageLen:	Number of data bytes to send. Valid range 0 to 8.

Function Return Codes:	qcSetupMessage = 0	Successful

	qcSetupMessage = -1	Port address not initialized

qcSetupMessage = -2	Invalid direction(> 1)

qcSetupMessage = -9	Invalid message object number(< 1 or >15)

qcSetupMessage = -10	Invalid message length (> 8)

qcSetupMessage = -11	Invalid id type (> 1)

Example:

qcSetupMessage(2, 1, 0x180, 0, 8);	// set message object 2 for standard,

//id=0x180, transmit 8 bytes

�

Function:	qcCheckMessage

The qcCheckMessage function reads the status of a message object. Use this function to poll for a received message.

Calling Conventions

C		unsigned int qcCheckMessage(unsigned char MessageNo)

Pascal		function qcCheckMessage(MessageNo: Byte): integer; stdcall;

Parameters

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission or reception.

Function Return Codes:		qcCheckMessage = -1	Port address not initialized

qcCheckMessage = -9	Invalid message object number

qcCheckMessage >= 0	Use following bit definition

qcCheckMessage 		= 1xxxxxxx	Bit 7; Message Valid=1, invalid=0.

			= x0xxxxxx	Bit 6; Transmit Interrupt, reference only, not used

			= xx0xxxxx	Bit 5; Receive Interrupt, reference only, not used

			= xxx0xxxx	Bit 4; Interrupt Pending, reference only, not used

			= xxxx1xxx	Bit 3; Remote Frame Pending

			= xxxxx1xx	Bit 2; Transmit Request

			= xxxxxx1x	Bit 1; Message Lost

		= xxxxxxx1	Bit 0; New data

Example:

	x = qcCheckMessage(1);

if(x & 0x01)

{	printf(“Message #1 received\n.”);

y = qcDataReceivedLen(1);

for(z=0; z<y; z++)

 printf(“Data Byte %d = %d\n”, z, qcReadMessageData(1, z));

qcResetMessage(1);		// allow another message to be received.

	}

Function:	qcReadMessage

The qcReadMessage reads the data from a message object into a array. The function qcReadMessage reads the number of data bytes received and places them at the address of the array passed to the function. Returns the number of bytes received. This function is useful for ‘C’ applications.

Calling Conventions

C		unsigned int qcReadMessage(unsigned char MessaageNo,

						unsigned char *Dpointer)

Pascal		function qcReadMessage(MessageNo: Byte;

					Dpointer: Pointer): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

Dpointer:	address pointer of array to received data into

Function Return Codes:	qcReadMessage >=0	Successful, returns number of bytes received

	qcReadMessage = -1	Port address not initialized

qcReadMessage = -2	Invalid direction(> 1)

qcReadMessage = -9	Invalid message object number(< 1 or >15)

Function:	qcResetMessage

The qcResetMessage resets the message received (NewDat) flag for a message object.

Calling Conventions

C		unsigned int qcResetMessage(unsigned char MessageNo)

Pascal		function qcSendMessage(MessageNo: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

Function:	qcSendMessage

The qcSendMessage transmits a message.

Calling Conventions

C	unsigned int qcSendMessage(unsigned char MessageNo)

Pascal		function qcSendMessage(MessageNo: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

Example:

qcSetupMessage(1, 1, 0x180, 0, 8);	// set message object 2 for standard,

// id=0x180, transmit 8 bytes

	for(x=0; x<8; x++)

		qcWriteMessageData(1, x, 0);	// clear the send data

qcSendMessage(1);			// send message in object #1

Function:	qcOnline

The qcOnline function enables the CANPORT for network operations and must be executed before the network messages can be sent or received.

Calling Conventions

C		unsigned int qcOnline(void)

Pascal		function qcOnline: integer; stdcall;

Function Return Codes:		qcOnline = 0	Online successful

				qcOnline = -1	Port address not initialized

Function:	qcOffline

The qcOffline function disables the CANPORT from network operations.

Calling Conventions

C		unsigned int qcOffline(void)

Pascal		function qcOffline: integer; stdcall;

Function Return Codes:		qcOffline = 0	Offline successful

				qcOffline = -1	Port address not initialized

Function:	qcWriteMessageData

The qcWriteMessageData updates one data byte in a message object. Each message object contains up to 8 data bytes. This function allows access to the individual data bytes.

Calling Conventions

C		unsigned int qcWriteMessageData(unsigned char MessaageNo,

 unsigned char DataNo,

						 unsigned char DataValue)

Pascal		function qcWriteMessageData(MessageNo: Byte;

 				DataNo: Byte;

					DataValue: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

DataNo:	Data byte to write data to. Valid range 0 to 7 (8 bytes total)

DataValue:	Value to be written

Function Return Codes:		qcWriteMessageData = -1 Port address not initialized

qcWriteMessageData = -9 Invalid message object number

qcWriteMessageData = 0 Success

Example:	See qcSendMessage section.

Function:	qcReadMessageData

The qcReadMessageData reads a data byte from the message object.

Calling Conventions

C		unsigned int qcReadMessageData(unsigned char MessaageNo,

 unsigned char DataNo)

					

Pascal		function qcReadMessageData(MessageNo: Byte;

 				DataNo: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

DataNo:	Data byte to read. Valid range 0 to 7 (8 bytes total)

Function Return Codes:		qcReadMessageData = -1 Port address not initialized

qcReadMessageData = -9 Invalid message object number

qcReadMessageData = x Returns data byte value.

Example:	See qcCheckMessage section.

Function:	qcDataReceivedLen

The qcDataReceivedLen returns the number of data bytes received.

Calling Conventions

C		unsigned int qcDataReceivedLen(unsigned char MessaageNo)

					

Pascal		function qcDataReceivedLen(MessageNo: Byte): integer; stdcall;

Parameters:

MessageNo:	Valid range 1 to 15. 82527 message object to use for transmission.

Function Return Codes:		qcDataReceivedLen = -1 Port address not initialized

qcDataReceivedLen = -9 Invalid message object number

qcDataReceivedLen = x Returns data byte value.

	

CANPORT Sample Visual Basic Program

	The sample application contains examples for using the CANPORT. It is written using Visual Basic version 5.0 for Windows 95 and does the following;

Search for printer port address where CANPORT is attached

Resets CANPORT

Sets the baud rate to 500,000 bps

Sets message objects

Sends repetitive messages

Interfaces common controls to message objects

�

This program shows how to send and receive messages between 2 PC’s or between 2 CANPORTS connected to different printer ports on 1 machine. One CANPORT is set to transmit the value of the scroll bar and a count using message ID 100 hex. The other CANPORT is set to receive the message and update it’s scroll bar and display the count value. A timer is used to send the message on a regular interval.

The files are located in the \canvb5 directory on the distribution diskette.

CANPORT Delphi Application

The CANPORT Delphi application is contained under the \canport\candel directory. Delphi is object Pascal and is a visual design environment. The CANPORT.DLL was written using Delphi and is highly recommended as a development environment.

Excel CANPORT Application

The included Excel spreadsheet shows how to write CAN applications using the Visual Basic for Applications that is part of Excel.

The spreadsheet contains the following sheets;

Module1 - Macros written in Visual Basic

Setup CANPORT - Sheet with initialization functions

Messages - Sheet for sending and receiving messages

Registers - Sheet for viewing the registers in the 82527

Macros

The Macros sheet contains the Visual Basic code that is executed from Excel objects.

Setup CANPORT

The Setup CANPORT sheet contains buttons to;

Search for the CANPORT

Reset CANPORT

Set Baud Rate - parameters set on sheet

Go online

Right click on the BUTTONS for the popup menu. The macro associated with the control is listed under the Assign Macro menu pick.

Messages

The Messages sheet shows the details for sending messages.

To Send a Message:

Enter the identifier in the A column

Enter the message length in the B column

Enter the required data bytes in columns C through J

Select the entire row by clicking on the left row selector

Push the Send Message button.

Results are displayed in the listbox.

The scroll bar gives an example of how to link the value of a control to a message. As the scroll bar is moved, the value is updated in the message in ROW 13, and this message is sent when the scroll bar is released (final value).

Registers

The Registers sheet displays the internal registers in the 82527.

DOS

Libraries

Included on the distribution diskette under the \CANPORT\CANDOS directory are the following DOS libraries;

CANDOSS.LIB - small library

CANDOSM.LIB - medium library

CANDOSL.LIB - large library

The libraries are built using Borland 4.5.

Test Application

The source code for a test application to read all network traffic is contained under the CANDOS directory.

EMICROS - Embedded Micro Software		CANPORT User Documentation

�

�

CANPORT Documentation	Page � PAGE �13�	Rev 2.0 9/15/97

